
AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN
DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS

Barak Zackay and Eran O. Ofek
Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel; bzackay@gmail.com, Eran.ofek@weizmann.ac.il

Received 2014 November 4; revised 2016 November 23; accepted 2016 November 28; published 2017 January 16

ABSTRACT

Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To
optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown
pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform”

algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of
+ DN N N N N2 logf t t f2( ),where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion

measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-
force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computerand implemented in a
high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical
processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The
latter algorithm’s computation and data-transport requirements are similar to those of atwo-dimensional fast Fourier
transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We
further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent
dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and
coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio
interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed
pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
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1. INTRODUCTION

When a radio pulse propagates through the interstellar and
intergalactic plasma, different frequencies travel at different
speeds. This phenomenon, known as dispersion, hinders the
detection of radio pulses. This is because integrating over a
wide bandwidth during a given time frame dilutes the signal
with noise, as only a narrow bandwidth contains the signal’s
energy at any given interval within the integration frame. The
solution to this problem is to dedisperse the signal (i.e., to
apply frequency-dependent time delays to the signal prior to
integration). Since in most cases the dispersion is a priori
unknown, we need to test a large number of dispersion values.
The best dispersion is the one that maximizes the signal-to-
noise ratio (S/N) of the pulse. A different way to look at this
problem is that we need to integrate the flux along many
dispersion curves in the frequency–time domain.

The difference in pulse arrival time between two frequencies
is given by

D = - = -- -t t t f f4.15DM ms, 12 1 1
2

2
2( ) ( )

where DM is called the dispersion measure of the signal, given
by the column density of free electrons along the line of sight to
the source (measured in units of -pc cm 3),fi are frequencies
measured in GHz, and ti is the arrival time of the signal at
frequency fi. For brevity, throughout the paper, we will use d to
denote the dispersion measure in which all the dimensional
constants are absorbed, and the relation is given by

D = - = -- -t t t d f f . 22 1 1
2

2
2( ) ( )

The raw input from a radio receiver is a time series of
voltage measurements sampled typically at high frequency

(e.g., ∼100MHz). We denote the sampling interval by τ. In
order to generate a spectrum (I t f,[ ]) as a function of time (t)
and frequency ( f),the time series is divided into blocks of size
Nf samples, and each block is then Fourier transformed (a
process known as short-time Fourier transform, or STFT),and
the absolute value squared at each frequency is saved after
summing the power from all polarizations Npol.

1

There are two distinct processes that we can apply to
dedisperse a signal: incoherent dedispersion and coherent
dedispersion. The term incoherent dedispersion refers to
applying frequency-dependent time delays to the I t f,( ) matrix,
while coherent dedispersion involves applying a frequency-
dependent phase shift to the Fourier transform of the raw
voltage signal. This subtle difference is important—incoherent
dedispersion is only an approximation that is valid under
certain conditions that we are going to review shortly
(Section 2). A typical input matrix (I t f,[ ]) to incoherent
dedispersion is presented in the top panel of Figure 1, while on
the bottom we show a zoom-in on the output of the transform.
The exact mathematical description of signal dispersion is

the multiplication of the Fourier transform of the raw signal
with the phase-only filter:

⎛
⎝⎜

⎞
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p
=

+
H f

id

f f
exp

2
. 3

0

ˆ ( ) ( )

(Lorimer & Kramer 2012), where f0 is the baseband frequency.
In order to coherently dedisperse the signal, we can apply the
inverse of this shift.
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1 Sometimes, an additional stage of binning is then applied to reduce the time
resolution.
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The computational requirements of incoherent dedispersion
are more tractable than those of coherent dedispersion, and
therefore whenever a blind search for astrophysical pulses is
done, incoherent dedispersion is usually the method of choice
(e.g., van Leeuwen & Stappers 2010).

The main practical motivation for improving dedispersion
algorithms is to allow efficient analysis of data from modern
radio interferometers. When a blind search for new sources is
conducted using a multicomponent radio interferometer,
coherent dedispersion of a large number of synthesized beams
is the most sensitive detection method. But, in reality, coherent
dedispersion, even on one beam, was considered (until this
work) unfeasible. In addition, applying incoherent dedispersion
to all independent sky positions is also generally unfeasible.

The standard solutions for this problem were one of the
following:

1. Dedisperse incoherently only a small fraction of the field
of view.

2. Combine the power from all antennas incoherently, and
incoherently dedisperse.

3. Use only a small compact core of the interferometer for
blind searches, and incoherently dedisperse.

The above solutions result, each with a different trade-off, in
orders-of-magnitude losses in time resolution, sensitivity, field
of view, and angular resolution. These losses can degrade the
scientific yield of transient surveys by orders of magnitude.
It is therefore important to improve upon these methods,

especially when searching for nonrepeating radio transients
such as fast radio bursts (FRBs; Lorimer et al. 2007; Thornton
et al. 2013). Efficient detection of such objects requires both
high sensitivity and a good spatial localization that is calculated
in real time. This is crucial for the multiwavelength follow-up
of these elusive transients (e.g., Petroff et al. 2014).
In this paper, we present the fast discrete dispersion measure

transform algorithm (henceforth FDMT) to solve the problem
of incoherent dedispersion. FDMT is a transform algorithm,
having (generally) equal sizes for both input and outputand
acomplexity that is only logarithmically larger than the input
itself.
In addition, we present a hybrid algorithm that achieves both

the sensitivity of coherent dedispersionand the computational
efficiency2 of incoherent dedispersion. Finally, we show that
using this algorithm, it is feasible to perform blind searches
with modern radio interferometers, and consequently to open
new frontiers in the search for pulsars and radio transients.
The structure of the paper is as follows. In Section 2 we

analyze the sensitivity of incoherent dedispersion. In Section 3
we review the existing approaches for incoherent dedispersion.
In Section 4 we describe the proposed algorithm, along with its
complexity analysis. In Section 5 we present a variant of the
algorithm that utilizes the fast Fourier transform (FFT) to make
the algorithm more efficient on multiprocessor technologies. In
Section 6 we compare the runtime of the implementation we
provide with existing implementations of brute-force dedisper-
sion. In Section 7 we propose a new hybrid algorithm for
detection of pulses shorter than the dispersive smearing limits
of incoherent dedispersion. In Section 8 we discuss the
application of the proposed algorithms for interferometers,
and we show that sensitive detection of short pulses, with
maximal resolution, using all the elements of the interferom-
eter, is feasible with current facilities. We conclude in
Section 9.

2. SENSITIVITY ANALYSIS OF INCOHERENT
DEDISPERSION

In this section, we develop the conditions on the pulse
length, the sampling interval, and the dispersion delay that
allow sensitive detection with incoherent dedispersion. This
will be of importance in Section 7.
We denote by x the raw voltage signaland by Ns the total

number of samples. We further denote the pulse duty time

Figure 1. A dispersed signal and its dispersion transform (FDMT), based on
simulated data. The top panel shows a 0.1 ms wide dispersed pulse with

= -D 40 pc cm 3. The bottom panel shows a zoom-in on the significant part of
the dedispersion transform. Notice that the Y axis has units of time because the
dispersion measure is parameterized by the total time delay between the
entrance and exit of the pulse into and out of the observed band. Note that
because the pulse is so thin, any slight error on the dispersion path will
immediately result in a substantial loss of the pulse power. Note also that the
characteristic shape visible near the correct solution is due to the fact that
curves with close Dt t0, can substantially intersect the pulse’s curve. This may
cause significant detections in these Dt t0, combinations. This is not to suggest
that match-filtering this shape on the FDMT output is required, as the most
informative detection statistic is the value returned in the FDMT output itself.

2 We define efficiency as the ratio between computational operations
performed and the amount of calculated scores, each score being the optimal
S/N statistic for detecting a pulse with the specific combination of starting time
and dispersion measure.
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(length) by t=t Np p , where Np is the number of samples
within the pulse. The optimal score for pulse detection is the
sum of the squared voltage measurements within the pulse start
time (t0) and end time:

å t= +
=

S x t j . 4
j

N

opt
0

0
2

p

( ) ( )

We define dmax to be the largest dispersion measure up to
which we want to dedisperse. We further define the maximal
dispersion time td to be the total delay of the pulse within the
band, and we define Nd to be the dispersion time in units of
samples:

t= = -- -t N d f f . 5d d max min
2

max
2( ) ( )

An important property of the dispersion kernel H( f ) is that it
is power-preserving ( =H f 12∣ ˆ ( )∣ ). Another important property
is that the majority of pulse power will liewithin the dispersion
curve in I t f,( ). However, by summing over the dispersion
curve in I, we also sum the power of the noise outside the
pulse, the total variance of which is proportional to the number
of added I bins,that is, to the area of the dispersion curve.
Assuming the dispersion curve is close to linear, the total area
of the dispersion curve can be approximated by

⎛
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Therefore, the ratio of the noise power summed by incoherent
dedispersion and the noise power within the pulse is
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Optimizing the sensitivity with respect to Nf we get the
following:

1. If <N Np f ,the choice of Nf that maximizes sensitivity is

=N N , 8f d ( )

regardless of pulse length Np.
2. If N Nf p,the choice of Nf that maximizes sensitivity is

=N N . 9f p ( )

In order for the sensitivity loss to be less than a factor of 2 ,
we equate Equations (7)–(2) and get the following:

1. If >N Nf p, then < -N N N N2d f p f( ). Substituting
Equation (8) we get the relation

<N N 10d p
2 ( )

2. If <N Nf p, then <N N Nd f p, which together with the
assumption yields again the relation

<N N . 11d p
2 ( )

Equation (10) transforms into an important relation between
the minimal pulse duration tp, the maximal dispersion time td,

and the sampling time τ:

t t
<

t t
12d p

2

2
( )

or, simplified,

t> ºt t t . 13p d inc ( )

This means that incoherent dedispersion cannot avoid a
minimal dispersion smearing of tinc. The sensitivity loss factor
from incoherent dedispersion is therefore (substituting
Equations (8) and (13) into Equation (7) and simplifying)

=
+

t

t t t

S N

S N max ,
. 14

p

p

inc

opt inc inc

( )
( ) ( )

( )

Therefore, incoherent dedispersion is insensitive3 when
t tp inc and approaches maximal sensitivity when t tp inc.

This pulse duration depends (weakly) on frequency and
dispersion measureand is given by

⎛
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See Cordes & McLaughlin (2003) for a similar derivation
of tinc.
Among the astrophysical sources with short pulse dura-

tionsreside pulses from millisecond pulsars, with durations of
~ - -10 s 10 s3 4.5– (Kramer et al. 1998), FRBs with durations of
~ -10 s3 (Thornton et al. 2013; Champion et al. 2015), and
pulsar giant pulses, forwhich theduration can be shorter than
2 ns (Hankins et al. 2003).

As a result of the insensitivity of incoherent dedispersion to
very short pulses, the phase space in which t tp inc is
effectively unexplored. For example, past search campaigns for
giant pulse-emitting pulsars could not probe this phase space
because of the limitations of incoherent dedispersion (see
McLaughlin & Cordes 2003; Bhat et al. 2011).
One phenomenon that prevents astrophysical pulses from

being infinitesimally narrow is the phenomenon of scattering.
Pulse scattering is a widely documented phenomenon in which
astrophysical radio pulses broaden as a result of multipath
propagation of the pulse through the interstellar medium (ISM).
In general, we expect scattering to increase with the dispersion
measure, as both depend on the amount of interstellar medium
between the source and the observer. An empirical correlation
between the observed dispersion measure of pulsars and the
observed scattering can be found in Bhat et al. (2004).
However, this correlation has a large scatter, whichspans
orders of magnitude of scattering times per constant dispersion
measure. Scattering measures depend on the D D

D
l s

ls
ratio, where

Dl is the distance to the screen, Ds is the distance to the source,
and Dls is the distance between the screen and the source. This
ratio may differ substantially for different sources. Possible
examples for sources in which this ratio is substantially
different than that of pulsars is the speculated population of
radio transients from cosmological sources (Macquart & Koay

3 We call a statistical score oralgorithm insensitive if it retains substantially
less than ~70% of the optimalS/N.

3
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2013). Another example is the recently found pulsar in the
vicinity of the galactic center (Spitler et al. 2014). In both
examples, the observed pulse broadening is orders of
magnitude shorter than the predicted scattering based on the
observed relation between dispersion measure and pulse
broadening. In addition, the scaling of scattering with
frequency ( n~ -4) is much steeper than the scaling of tinc with
frequency (n-3 2). Therefore, the need for coherent treatment
of dedispersion also depends on the observing band.

As a result of all these complications, we find it more robust
to keep the discussion in the rest of the paper tousing observed
pulse durations, rather than scattering measures, distances, or
spectral indices, whichare often found in the literature.

3. EXISTING ALGORITHMS FOR INCOHERENT
DEDISPERSION

Algorithmically, there are two leading approaches for
incoherent dedispersion of single-dish data streams. These are
the tree dedispersion (Taylor 1974) and brute-force dedisper-
sion (e.g., Magro et al. 2011; Barsdell et al. 2012; Clarke
et al. 2013).

The tree dedispersion algorithmefficiently calculates the
integrals of all the straight-line paths with slopes between 45°
and 90° through the input time versus frequency matrix (this is
similar to the discrete Radon transform, Gotz & Druckmul-
ler 1996; Brady 1998). The computational complexity of this
algorithm is N N Nlogt f f2 , where we use the notation

=N N Nt s f (note that Nt and Nf are the dimensions of
I t f,( )). However, since the dispersion curve is not linear, the
use of this method results in a substantial loss of sensitivity.
This can be somewhat mitigated by applying the algorithm to
many small subbands4 of the data, and then combining the
results with a dedicated algorithm. This approach is not exact,
and it increases the computational complexity of the algorithm.
More details on the sensitivity analysis and computational
complexity of this algorithm aregiven in Barsdell et al. (2012).

The brute-force dedispersion algorithm simply scans all of
the trial dispersion measuresone at a time, integrating its path
on the input map and finding curves with excess power. This
method is exactbut has the high complexity of DN N Nf t, where
DN is the number of trial dispersion measures scanned. In order

to expedite the search speed, the algorithm was implemented
on graphical processing units (GPUs), and this method is now
capable of analyzing single-beam data in real time (Barsdell
et al. 2012). Furthermore, as shown by Cordes & McLaughlin
(2003), one can reduce the numberof dispersion trials by a
small factor by optimizing the distances between adjacent
dispersion trials. The maximal sensitivity, along with the
possibility of real-time analysis using GPUs, makes this
method likely to be the most popular algorithm for
dedispersion.

Here we present an algorithm that combines both maximal
sensitivity and low computational complexity. A comparison of
all these mentioned algorithms is summarized in Table 1.

4. THE FDMT ALGORITHM

The input to the FDMT algorithm is a two-dimensional array
of intensities, denoted by I t f,( ). Denote the width of a

frequency bin by df and the width of a time bin by dt, satisfying

d d t=
-f f

N
N, . 16f

f
t f

max min ( )

The FDMT algorithm calculates the integral over all curves
defined by Equation (2). A dispersion curve can be uniquely
defined by the arrival time of the signal at the lowest frequency
(t0) and the time delay between the arrival times of the lowest
and highest frequencies (Dt).
Therefore, the FDMT result can be expressed as a two-

dimensional array that contains the integrals along dispersion
curves as a function of t0 and Dt:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥åD = - -

=

A t t I t d
f f

f,
1 1

, , 17f
f

f f

f

0 0

min
2 2min

max

min

max

( ) ( ) ( )

where fmin and fmax are the minimum and maximum
frequencies in the observed band.
To compute the FDMT transform of the input, the algorithm

works in Nlog f2( ) iterations. The inputs of the ith iteration are
the FDMT transforms of a partition of the original band into

-N 2f
i 1( ) subbands of size -2 i 1( ) frequencies. The outputs of the

ith iteration are the FDMT transforms of a partition of the
original input into N 2f

i subbands of size 2i frequencies. Every
two successive subbands are combined using the addition rule
described below. After Nlog f2( ) iterations, we have the FDMT
over the whole band.
The FDMTprocess of combiningtwo successive subbands

into DA t t,f
f

0
0

2 ( )is given by the following addition rule:

D = - + -A t t A t t t A t t t, , , . 18f
f

f
f

f
f

0 0 0 1 1 1 2
0

2

0

1

1

2( ) ( ) ( ) ( )

Here, A f
f

0

1 and A f
f

1

2 are part of the output of the previous
iteration,and t1 is the intersection time of the dispersion curve

at the central frequency = +
f

f f
1 2

2 0 . And t1 is uniquely
determined by the formula

º - D
-

-
º - D

- -

- -t t t
f f

f f
t C t, 19f f1 0

1
2

0
2

2
2

0
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where

º
-

-

- -

- -C
f f

f f
. 20f f,

1
2

0
2

2
2

0
22 0

( )

By definition, -A t t t,f
f

0 0 1
0

1 ( ) is the calculated sum over the
unique dispersion curve between the coordinates t f,0 0( ) and
t f,1 1( ), and -A t t t,f

f
1 1 2

1

2 ( ) is the same for t f,1 1( ) and t f,2 2( ).
After an FDMT iteration, the only dispersion curve passing
through t f t f, , ,0 0 2 2( ) ( )will be given by -A t t t,f

f
0 0 2

0

2 ( ).
For sufficiently early t0, the time t1 will be smaller than zero.

In that case we just copy, that is, use the alternative addition
rule:

D = -A t t A t t t, , . 21f
f

f
f

0 0 0 1
0

2

0

1( ) ( ) ( )

The operation of one iteration of the algorithm is graphically
illustrated in Figure 2.
The only thing left to deal with is the data initialization.
This is done prior to the first iteration, generating A f

f

0

1 for
every two consecutive frequencies. If the maximum dispersion
delay between two consecutive frequencies is smaller than the

4 A subband of the data is a part of the data that is both limited and
continuous in frequency.

4
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width of a time bin, then we can use the simple initialization:

=d+A t I t f, 0 , . 22f
f f ( ) ( ) ( )

Otherwise, the energy of the signal at some frequencies is
not located at a single bin. Note that this implies D N Nf ,
which we show in Section 2 to be suboptimal in terms of
sensitivity. This can be compensated for in two ways:

1. By computing partial averages over the time axis:

åd
dD =

D
+d+

=

d
D

A t t
t

I t j f, , . 23f
f t

j
t

0

f

t
t

( ) ( ) ( )

Note that if the maximal dispersion measure is large,
multiple Dtʼs are computed, andthis step, unlike the
FDMT iterations, inflates the data.

2. If for a certain dthe time delay within each single
frequency bin is larger than one time bin, we can simply
reduce the time resolution (i.e., bin). This process is
analogous to rebinning before scanning dispersion
measures above the “diagonal DM” using tree
dedispersion.

Note that option 1 is more sensitive than option 2 in general as
there might be a mismatch between the pulse phase and the
boxcar phase. For further discussion, see Keane & Petroff
(2015). In the MATLAB and Python codes we provide, we use
option 1. The maximal time delay within each frequency bin is
uniquely determined by dmax, the maximal d we want to scan,
and is given by

dD = - +- -t f d f f . 24fmax 0 max 0
2

0
2( ) ( ( ) ) ( )

Therefore, this decision can be made prior to the computation.
A pseudocode of FDMT is given in Algorithm 1. In addition,

we provide implementation for the algorithm in Python and
MATLAB.5 Note that so far we have not treated rounding and
binning issues;these are discussed in Section 4.2 and are
implemented in the codes we provide.

Algorithm 1. The FDMT Algorithm

Input: I f t,( ) input matrix (possibly packed);t axis is continuous in memory.
Output: Time series of integrated flux density as a function of trial dispersion

measures. Output is arranged in a (possibly packed) two-dimensional table
DA t t,f

f

min
max ( ) where Dt represents the dispersion measure axis.

1: Initiate the table by dD = å +d d d+
D =

DA t t I f t j, ,f
f

t j
t

t0
f t t( ) ( )

2: for iteration j = 1 to =j Nlog f2 do
3: for f0 in the range f f,min max[ ] with steps d2j

f do

(Continued)

4: d= +f f 2j
f2 0

5: = +
f

f f
1 2

2 0

6: =
-

-
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- -C f f
f f

f f
,2 0

1
2

0
2

2
2

0
2

7: D = -- -t j f d f f,max 0 max 0
2

2
2( ) ( )

8: for Dt in the range Dt j f0, ,max 0[ ( )] with steps dt do
9: for t0 in range DC t N,f f t,2 0[ ] with steps dt for
10: = - Dt t C tf f1 0 ,2 0

11: D = - + -A t t A t t t A t t t, , ,f
f

f
f

f
f

0 0 0 1 1 1 20
2

0
1

1
2( ) ( ) ( )

12: end for
13: for t0 in the range DC t0, f f,2 0[ ] with steps dt do

14: D = -A t t A t t t, ,f
f

f
f

0 0 0 10
2

0
1( ) ( )

15: end for
16: end for
17: end for
18: end for

4.1. Computational Complexity

To calculate the computational complexity, we need to trace
the number of operations done throughout the algorithm. The
amount of additions in iteration j is bounded from above by

DN N N jb t ( ),where Nb is the number of subbands processed at
the current iteration, and DN j( ) is the number of distinct
dispersion measures needed to calculate for a subband at
iteration j:

d

d
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2
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( )

As a first-order approximation, one can assume that the
dispersion curve is almost linear, meaning that the number of
unique dispersion trials needed in iteration +j 1 is roughly
twice the number needed in iteration j. In the last iteration,

=D DN j Nmax( ) , and therefore, in iteration j,

»D
DN j

N

N

2
. 27

j

f
( ) ( )

The number of bands (Nb) in each iteration is =Nb
N

2
f

j .
Therefore, under the approximation of almost linear dispersion
(or narrow band), the following approximation is correct:

»D DN N j N Nmax , . 28b b( ) { } ( )

Table 1
Algorithm Comparison

FDMT Brute Force Tree

Computational complexity DN N N N Nmax log , 2t f f t2{ ( ) } DN N Nf t N N Nlogf t f2( )
Information efficient Yes Yes No
Memory-access friendly Yes Yes Yes
Parallelization friendly Yes Yes No

Note. Comparison of the FDMT algorithm with two other approaches to incoherent dedispersion, brute force (e.g., Barsdell et al. 2012)and tree dedispersion
(Taylor 1974). The computational complexity of FDMT is at least two orders of magnitude smaller than that of brute-force dedispersion for typical ~N 2f

10, while
retaining maximal sensitivity.

5 The Python code is available from https://sites.google.com/site/
barakzackayhomepage/home, and the MATLAB code is available
fromhttp://webhome.weizmann.ac.il/home/eofek/matlab/ (Ofek 2014).
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Summing this for all iterations, and assuming NΔ is dominant
in all iterations, and taking into account the number of entries
in each added row (Nt), we get the complexity

= DC N N Nlog . 29t fFDMT 2 ( ) ( )

If we assume Nb is dominant, we get

= + + =C N N
N N

N N
2

... 2 . 30t f
t f

t fFDMT ( )

Therefore, the total complexity of the algorithm is bounded
from above by

 + DC N N N N N2 log . 31t f t fFDMT 2 ( ) ( )

Casting the complexity analysis of the FDMT algorithm with
the more naturally defined N N,s d , using =N N Ns f t and

=
dDN t N

N
d

t

d

f
we get

 +C N
N N

N
N2 log . 32s

s d

f
fFDMT 2 2 ( ) ( )

Adding to the above the complexity of data preparation by
STFT, N N Nlogs fpol 2( ), and the fact that if we chose <N Nf p

we can effectively bin the input matrix I f t,( ) in both time and

frequency domains by a factor
N

N
p

f
(or low pass, see Section 5.1)

to a final size of Np, we get

 + +C N N N
N N

N

N N

N
Nlog

2
log . 33s f

f s

p

d s

p
fFDMT pol 2 2 2 ( ) ( )

Here we can see that the data preparation complexity dominates
the operation count of the algorithm whenever incoherent
dedispersion is maximally sensitive (i.e., <N Nd p

2).

4.2. Implementation Details

Here, we consider implementation issues, such as rounding
and binning, pulse profile convolution, and dividing the band
into an arbitrary number of frequency channels. In addition, it
is important to implement the tricks of the trade, in order to
transform the theoretical complexity reduction into a real
speedup.
Rounding and Binning: The exact formulas written above

need to take into account thediscreteness of both frequency
and time axes. To keep the formulas readable, we did not
include these considerations in the algorithm description and
pseudocode. However, we include them in the implementation
we provide, and we advise readers who want to implement the
FDMT to pay attention to the discretization process. That is
because an incorrect choice might lead to a significant
reduction in accuracy.
An example of the most important discretization issueis

that, when combining two subbands, the point t1where the
dispersion curve travels from one subband to the next might not
be well defined. This can happenbecause the dispersion curve
might travel one bin between the end frequency of the first
band d+ -f 2 1i

f0 ( ) and the start frequency of the second
band d+f 2i

f0 . The implemented solution for this problem is
to calculate two versions of C f f,0 2

, one with the end frequency
of the lower subband, and the other with the start frequency of
the upper subband. Using the different versions of C f f,0 2

in the
two different uses of t1, we can account for a time shift between
the added bands, approximating the dispersion curve better.
Machine Word Utilization: One can utilize the machine word

width (or the Advanced Vector Extensions (AVX)) to pack
afew instances of the dedispersion procedure into one
computation (since modern computers operate on machine
words of 64 bits, this will result in a speedup factor of 4–8

Figure 2. Illustration of a single iteration of the FDMT algorithm.On the left side, the input frequency vs.time input table is drawn. An example dispersion curve is
highlighted in purple. The input table is methodically divided into two subbands. The right-hand table shows the final dedispersion transform of the input (left), where
the integral over the purple dispersion curve (left) is marked by the purple cell on the right. In the middle, the dispersion measure transform of the two subbands (which
are assumed to be calculated in the previous iteration) are drawn, where each of the two subbands contains in each cell the sum of the unique dispersion trail with exit
point t and total delay Dt through the corresponding subbands. The dispersion measure dimension is parameterized usingD = -t t t0 0 1 and D = -t t t1 1 2. The cells
that contain the partial sums of the two halves of the purple dispersion curve on the left are highlighted in purple. Highlighted in redis a row in the dispersion tables
that contributes to the calculation of the red cells on the right. Notice that we can add the lines highlighted in red as vectors, in order to implement the algorithm in a
vectorized form. Highlighted in orangeare the cells that use the alternative addition rule, in the case when the dispersion trail exits the boundaries of the input table.
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depending on the number of bits per frequency and the pulse
maximum allowed strength).

Memory Access: An important issue in runtime reductionis
the continuity of memory access. The FDMT algorithm never
performs any reordering action along the time axis. Therefore,
it is recommended to store the time axis continuously in order
to speed up the memory-access operations. We note that this
choice is not standard, and that most telescope data streaming
systems store the data in time-major ordering. Therefore, a data
transpose operation may be required in order to apply FDMT
efficiently.

Applying Window Functions and Filter Banks: The process
of transforming from the time domain to the time–frequency
matrix was described in this paper as a simple short-time
Fourier transform, though in practiceit is generally recom-
mended to use a polyphase filter bank instead. While neither
the computation complexity nor the sensitivity of the transient
search is affected by this, the resilience to radio frequency
interference (RFI) and spectral leakage is greatly improved. As
a result, this is not a main concern for this paper.

Mitigating the Sensitivity Loss or Squeezing Additional
Speedup: It is possible to increase the sensitivity of a pulse
search (or alternatively, viewing it as an additional speedup) by
choosing a slightly lower time-dm resolution for the FDMT,
marking all ofthe pulse candidates above some (low) thresh-
old. Then, for each candidate we can scan the finer resolution
t d,0( ) in order to make the final decision using a score with
maximal sensitivity.

An example scheme for saving computation time is as
follows.In the first step, aim at half the maximal sensitivity of
a full-blown search by using four times the optimal binsize for
both the frequency and time dimensions. If a significant pulse is
to be detected in the final stage, it should have significance
larger than s~8 . This means that at half the sensitivity, this
pulse will have amean significance of s4 , and thus, assuming
the dedispersed scores have aGaussian distribution, with high
probability (>85%) the correct t d,0( ) combination will pass the
s3 threshold. Each random t d,0( ) combination has a
probability of roughly 1/750 to pass this threshold. Assuming
the number of dispersion measures (in the coarse resolution)
enumerated was <DN 103.5, then the computational work for
dedispersing all of the candidates with maximal sensitivity is
smaller than or equal to the complexity of the FDMT algorithm
itself. Using this scheme, it is possible to save roughly an
additional order of magnitude in the computation time of the
dedispersion step without sensitivity losses or a significant
false-negative probability. Using a similar scheme (with s4 as
threshold), it is possible to eliminate most of the built-in 2
sensitivity loss of the finite t d,0( ) grid without significant
additional work.

Different Range of Dispersion Measures: Sometimes we
have a prior knowledge of the range of dispersion measures we
need to scan. In that case, one can still employ the FDMT
algorithm after an additional preparation of applying either a
frequency-dependent shift to the input (according to some
dmin)or a coherent dedispersion of the signal (using dmin).

Pulse Profile: Sometimes we have prior knowledge on the
pulse width or profile (there might be a different profile for
each frequency, like in pulse scattering). By applying a
matched filter approach, one can convolve each frequency
time series with the predicted profile for that frequency and

employ the FDMT at the end. For wide-enough pulse shapes,
one might consider binning the time resolution.
We note that convolution of the time axis with a uniform

pulse profile (for all frequencies) commutes with the entire
FDMT operation. Therefore, we can test a few pulse profiles
per FDMT without repeating the dedispersion process. An
important note is that such an operation changes the effective
variance of the detection score in a nontrivial way (because the
variance change in each DM trial will be different due to
different path lengths in the time–frequency matrix). We
therefore recommendeither keeping careful accounting of the
variance through the algorithm, or simply measuringit
empirically for each combination of DM trial and pulse profile
separately.
Dealing with the Case of ¹N 2f

k: The algorithm presented
above assumes that the number of frequency channels is strictly
a power of two. This assumption can be abandoned by slightly
adjusting the addition rule to allow a merger of nonequal-size
subbands. The only change needed is to switch f1 in
Equation (20) from being the middle frequency between f0
and f2 to being the border frequency between the subbands.
Applying FDMT for Other Functional Forms: The disper-

sion equation (Equation (2)) is used only in the preparation of
C f f,2 0

. One can easily extend the FDMT algorithm to search for
other functional forms, for example,

D = -g gt f f . 341 2 ( )

The only required modification is to change the power of the
frequency in Equation (20) from −2 to γ. Furthermore, it could
be extended to any family of curves that satisfies the condition
that there is only one curve passing between any two points in
the input data. Using this, one can calculate the required
C f f,2 0

by finding the only curve passing through both t f,0 0( )
and t f,2 2( ), and defining t1 to be the intersection time of the
curve with the frequency f1. While the complexity of the
algorithmmay change with the functional form, for a
sufficiently regular functional form, the complexity will be
close to N N Nlog .d t f

5. ELIMINATING SHIFTS BY FAST FOURIER
TRANSFORMING THE TIME AXIS

In modern computers and GPUs, memory access is
frequently the bottleneck of many algorithms, especially when
programming transforms, where the computational complexity
is only slightly larger than the data size. Efficient implementa-
tion of transform algorithms is nontrivial and requires
architecture-dependent changes in order to avoid cache misses6

(in a general CPU setup) or to avoid communication when
using distributed computing. While it is probably possible to
control the behavior of the algorithm as presented above, it is
nontrivial to distribute the data between different processing
units while avoiding duplication and communication issues.
Here, we present a variant of the algorithm that is easily

parallelized on all architectures and where the memory-access
pattern is as parallelization-friendly as possible.
The algorithm, as it is described in Section 4, has only one

core operation: adding a complete shifted “time” row. It is the

6 In modern computers, the fastest memory buffer is the L1 cache. An access
to a value that is not stored in the L1 cache causes a memory read from slower
storage media such as theL2 cache or the RAM memory, and this is sometimes
called a “cache miss.”
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shift operation thatmakes the data transfer and memory
management of the algorithm challenging, and therefore we
wish to eliminate shifts from the algorithm. In order to do that,
we can Fourier transform the time axis. This makes the shift
operation become a multiplication with a “shift vector” thatis
the Fourier transform of a shifted delta function. In this version,
all additions are of numbers from the same (Fourier
transformed) time coordinate.7 Therefore, we can assign
different parts of the (Fourier transformed) time axis to
different processing unitsand consequently reduce the need
for shared memory or data transport. At the end, we need to
Fourier transform back the time axis. We call this algorithm
FFT–FDMT, and it is summarized in Algorithm 2. Tracking
the data in this algorithm, we can see that there are only two
“global” steps and that they are both transpose operations of the
data. To perform all other steps of the algorithm, we need only
to access memory that is not larger than one row or one column
of the input. Since present L1 cache architectures can contain
more than a typical row or column of data, the algorithm can be
computing-power limited. The runtime of this algorithm on any
machine is comparable to the runtime of two-dimensional
convolution, because of the similar number of operations and
data-access patterns. We note that in the basic preparation of
radio data, one often applies Fourier transforms (for example,
when applying filters or screening for radio frequency
interference). Therefore, if we have the computational ability
to prepare the input table from the raw data, FFT–FDMT is also
feasible.

Algorithm 2. The FFT–FDMT Algorithm

Input: I f t,( ) input matrix (possibly packed);t axis is continuous in memory.
Output: Time series of integrated flux density as a function of trial dispersion

measures. Output is arranged in a (possibly packed) two-dimensional table
DA t t,f

f

min
max ( ) where Dt represents the dispersion measure axis.

1: Initiate the table by

åd
dD =

D
+d

d
+

=

D

A t t
t

I f t j, ,f
f f t

j

t

t
0

t

( ) ( )

2: Initiate the “shift vector”  dD = DV t t t t,0 0(˜ ) ( ( ))(˜ ) where d x( ) is a vector
containing 1at position x and zeros everywhere else,  is the FFT operator,
and t0̃ is the index of the Fourier transformed time axis.

3: Fourier transform the time axis

D = Dd d+ +B t t A t t, ,f
f

t f
ff f(˜ ) ( ( ))

4: Transpose the data. After this action, the frequency and Dt axes should be
continuous in memory, and the time axis should be distributed across all
computing units.

5: for t0̃ in the range N0, t[ ] do
6: for j in the range N1, log f2[ ] do
7: for f0 in the range f f,min max[ ] with steps d2j

f do
8: d= +f f 2j

f2 0

9: = +
f

f f
1 2

2 0

10 =
-

-

- -

- -C f f
f f

f f
,2 0

1
2

0
2

2
2

0
2

11: D =
d

D
- +

-

- -

- -t j f N,
f f

f f
max 0

2 j
f0

2
0

2

min
2

max
2( ) ( )

12: forDt in the range Dt j f0, ,max 0[ ( )] do
13: D = Dt C tf f1 ,2 0

(Continued)

14:

D = D +

D - D D

B t t B t t

B t t t V t t

, ,

, ,

f
f

f
f

f
f

0 0 1

0 1 0 1

0
2

0
1

1
2

(˜ ) (˜ )

(˜ ) (˜ )

15: end for
16: end for
17: end for
18: end for
19: Transpose the data back. Now, time is again continuous in memory.
20: Perform inverse Fourier transform on the time axis

D = D-A t t B t t, , .f
f

t f
f1

min
max

min
max( ) ( (˜ ))

5.1. Comments on the Implementation of the FFT–FDMT
Algorithm

The FFT–FDMT algorithm is designed to increase the
amount of computation per cache replacement. To completely
optimize the algorithm for this property, we have to consider
special implementation details like cache size and processing
unitcommunication geometry. Though important to an effi-
cient implementation of the algorithm, these details are outside
thescope ofthis paper as they are dependent onarchitecture.
We note that all the details discussed in Section 4.2 are valid
also for the FFT–FDMT version, except for the changes listed
below.
Machine Word Utilization: The long integer data type is the

optimal choice for the regular FDMT algorithm in order to fully
utilize the machine word capability. In the Fourier-transformed
version of the algorithm, we have to use the complex floating-
point data type. Using the floating-point data type, we have to
leave unused the bits of the exponent fieldand leave some
more bits unused to retain the floating-point precision needed
to perform the Fourier transform operations. Furthermore, some
architectures such as GPUshave a clear optimization pre-
ference for the 32 bit floating-point data type. However, it is
possible to pack another algorithm instance into the complex
field of the input vector. Since the result of the FDMT
algorithm is real (as a sum of real numbers), packing another
input into the imaginary part of the input is possible. The
imaginary part of the result will be the second algorithm
instance.
Pulse Profile: In addition to the ability to test several pulse

profiles per FDMT operation, as explained in Section 4.2, we
can further exploit the use of the Fourier-transformed time
domain. If the pulse width is slightly larger than one bin,
reducing the computational load by binning loses information.
Instead, we can effectively apply a low-pass filter on the time
axis by either keeping fewer(time-domain) frequencies or
multiplying with a filter. This can be both more sensitive than
binning the time axis and more efficient than having a high
sampling rate.
Handling Large Dispersion Measures: If the maximum

dispersion broadens the pulse to more than one time bin per
frequency bin, the initialization phase of the algorithm inflates
the data from size N Nt f to size DN Nf (note that the use of
D N Nf is losing sensitivity, and therefore this part is not

considered a crucial part of the algorithm). The partial sum
7 The Fourier transform of the time axis yields what is known in the literature
as the fluctuation power spectrum, α.
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operation of the initialization phase is equivalent to an
application of a low-pass filter on the time axis. This allows
anatural reduction of computation and memory by saving a
differential amount of Fouriered time bins for different Dtʼs.
This can be used in the case of large dispersion measures to
reduce the algorithm’s complexity from DN N Nlogt f2( )

to DN N2 logt f
N

N2
f( ).

Zero Padding: Since convolution is a cyclical operation, all
the shifts done in this algorithm are cyclical shifts. Therefore,
we have to pad the time axis with NΔ zeros prior to the Fourier
transform. This operation can increase by a factor of two the
complexity of the algorithm if =DN Nt. To avoid this we can
choose DN Nt . This is usually possible if the size of the input
table is not too close to the maximum memory (or cache)
capacity of the machine used.

6. RUNTIME AND BENCHMARKING

Accurate benchmarking of algorithms should use a mature
codeand contain architecture-dependent adaptations. However,
it is important to demonstrate that the code we present, running
on a single standard CPU, is competitive with the brute-force
dedispersion implementations on GPUs. Therefore, we provide
a simple benchmark for the provided code.

The benchmark we use is the runtime of performing FDMT
on data with the following properties: =N 2f

10, = ´N 5 2t
16,

and =DN 210. This volume of input is similar to the one used in
the “toy observation” defined in Barsdell et al. (2012) and
Magro et al. (2011), =N 2f

8, =N 2t
19, and =DN 500.

However, we modified the partition between N N,f tand
increased Nd by a factor of two.8 The runtime we achieve on
this data is 3.5 son a standard Intel Core i5 4690 processor. For
example, these numbers can represent a real-time dedispersion
of 8 sof input data with 40MHz bandwidth and 1024
dispersion trials. To get this benchmark, we pack five instances
of the algorithm into the 64 bit machine word, allocating 12 bits
to each instance. The resulting packed data sethas dimensions

= =N N2 , 2t f
16 10and serves as input to the FDMT imple-

mentation. Using this scheme, we find that our runtime is
already shorter than that of the state-of-the-art brute-force
implementations on GPUs reported in Barsdell et al. (2012) and

Magro et al. (2011). A comparison between the runtimes is
shown in Table 2.

7. BRIDGING THE GAP BETWEEN COHERENT AND
INCOHERENT DEDISPERSION

Since some interesting transient sources such as pulsar giant
pulses are in the regime < N N1 p d , it is importantto find
a feasible and sensitive algorithm for their exact dedispersion.
Coherent dedispersion was, until now, the only sensitive
alternative. The noise power summed when searching for a
pulse that is dispersed with a dispersion measure d0 is

+N N . 35p d0 ( )

The noise power summed when searching for a nondispersed
pulse is Np, and therefore the largest dispersion tolerable
(denoted by dd) for sensitive pulse detection satisfies

=dN N . 36pd ( )

Therefore, for sensitive detection, the number of dispersion
measure trials we need to process is

= =
d

DN
N

N

N

N
. 37d d

pd

( )

The convolution operation performed for coherent dedispersion
can be efficiently calculated with Fourier transforms of size Np,
and therefore the complexity of coherent dedispersion is

=C N
N

N
N Nlog . 38d

p
s pcoherent pol 2 ( ) ( )

Noting that the computational complexity of coherent ded-
ispersion scales with N Nd p and that of incoherent dedispersion

scales with N Nd p
2, we see that using coherent dedispersion is

not computationally efficient for resolved pulses (i.e., >N 1p ).

7.1. Hybrid Algorithm for Dedispersion

In order to have both the detection sensitivity of coherent
dedispersion and the computational complexity of FDMT, we
propose the following solution: coherently dedisperse the raw
signal with coarse-trial dispersion values (with steps dd), and
then apply STFT and absolute value squared, followed by
FDMT with the maximal dispersion being the next coarse-trial
coherent dedispersion. This process ensures that the FDMT
will not lose sensitivity, relative to coherent dedispersion.

Table 2
Runtime Comparison

This Work Magro et al. (2011) Barsdell et al. (2012)

Machine used Intel Core i5 4690 Tesla C1060 GPU Tesla C1060 GPU
Programming language Python (anaconda + accelerate) C C
Number of instances packed 5 1 1
Runtime 3.5 s 4.8 s 2.1 s

DN N N, total ,f t ( ) ´2 , 5 2 , 210 16 10 2 , 2 , 5008 19 2 , 2 , 5008 19

DN N Nf t ´5 236 236 236

Algorithm used FDMT (non-FFT version) Brute force Brute force
Algorithm theoretical complexity + DN N N N Nlogt f t f2( ) DN N Nf t DN N Nf t

Note. The FDMT algorithm has a different computational complexity scaling than the brute-force dedispersion it is compared to. The implementation we provide was
intended to serve as a high-levelreference implementation for futurehighly efficient, platform-specialized implementations. But, even with a standard desktop
computer, our high-level FDMT implementation is faster than the existing GPU implementations of brute-force dedispersion. Our MATLAB code has similar
performance.

8 This is a more realistic choice, since using large >DN Nf usually loses
sensitivity (see Section 2), and the number of frequencies is usually larger
than 210.
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We denote by dN d the number of bins of length τ that a delta
function pulse will spread overwhen dispersed by dd :

d

t
=

-
d

- -

N
d f f4.15 ms

39d
min

2
max

2( )
( )

As shown in Section 2, in order to retain sensitivity, the
maximal dispersion residual to be processed by the following
FDMT must be bounded from above by

=dN N2 . 40d p
2 ( )

(The factor of 2 in the above equation is due to the fact that
FDMT can be applied to alsofindnegative dispersions).
Therefore, the number of dispersion trials we need to
coherently dedisperse is

=N
N

N2
. 41d

p
coherent 2

( )

This process is approaching maximum sensitivity, and its
complexity is

= +

+ +

C
N

N
N N N N

N N

N

N N

N
N

2
log log

2
log , 42

d

p
s d f

d s

p

d s

p
f

hybrid 2 pol 2 2

2 2 2

( ( ) ( ))

( ) ( )

where the right-handpart was computed simply by observing
that the complexity of FDMT is exactly twice the input
dimensions plus Nlog f( ) times the output dimensions. Simpli-
fying, we get the computational complexity for detection of a
pulse of length Np:

= + + +C
N N

N
N N N N

2
4 log 2 log .

43

d s

p
d phybrid 2 pol 2 pol 2( ( ) ( ) ( ))

( )

7.2. Using Convolving Filter Banks

The coarse enumeration using coherent dedispersion may
contain very large FFTs, which may be prohibitive because of
the need to access large volumes of data simultaneously. This
could be mitigated in two ways.The first is by using the
minimal dedispersion kernel Hd0 to dedisperse the signal from
the last iteration, thereby linearly shifting the dispersion
measure phase space scanned in each iteration by the correct
amount with FFTs of size Np

2 instead of Nd
2. We can save even

further by performing small convolutions on the already
channelized data, =I t f x t, STFTc ( ) ( ( )), and dedisperse each
channel separately using coherent dedispersion. This process is
known as “convolving filter bank” and is detailed in van
Straten & Bailes (2011). By combining both methods, we can
reduce the complexity of the coarse coherent dedispersion stage
to linear time. Essentially, using this process we can use time-
domain complex convolutions on the already STFTed data with
convolution kernels of very small sizes (which can be as little
as convolving with a ∼4 tap filter (in addition to a large shift)).
This reduces further the computational complexity of

hybriddedispersion to be

= +C
N N

N
cN Nlog , 44d s

p
phybrid 2 pol 2( ( )) ( )

where we have aggregated the complexity of all the

shortO
N N N

N
d s

p

pol

2( ) operations (convolving filter bank, absolute

value squared,and FDMT initialization into ~c 7).
This complexity is near optimalbecause the number of

uncorrelated scores is N N

N
d s

p
2 , which is only a logarithmic factor

smaller than the computational complexity. Therefore, there is
not much room for further reduction of computational
complexity. The algorithm is summarized in Algorithm 3.

Algorithm 3. Coherent Hybrid FDMT Dedispersion Algorithm

Input: Antenna voltage series x(t).
Output: Time series of integrated flux density as a function of trial dispersion

measures. <d dmax with steps d
N

N max
p

d
and all exit times t<t Ns0 with

steps tNp .
1: Apply STFT with block size Np on x(t) to obtain I t f,c ( ).

2: for dispersion d0 in the range d0, max[ ] in steps of d2
N

N max
p

d

2

do

3: Apply the filter = p
+

H f expd
id

f f

2
0

0

0( )ˆ ( ) to I t f,c ( ) via convolving filter bank

(i.e., apply in separate channels), perform absolute value squared, and sum
over all polarizations to get I t f,( ).

4: Apply FDMT to I t f,( ), with  t t- DN t Np p
2 2 , and output the partial

result +A d d t,f
f

0 0min
max ( ).

5: end for

7.3. Implications

Using this algorithm, it is possible to perform blind searches
for pulses with duration in the 1 μs to0.1 ms regime (which
implies =N 10 10p

2 4– for standard searches). Searching for
pulses with this short durationopens a parameter space that had
never been scanned before in a blind survey, and allows us to
feasibly search for pulsars via their giant pulse phenomenon.

8. BLIND TRANSIENT SEARCHES WITH RADIO
INTERFEROMETERS

There are two existing approaches to blind search inter-
ferometry. The first is to add antennas incoherently and then
dedisperse. This is considered to be computationally feasible,
and it is sensitive to the entire field of view of the
interferometer. However, this process loses the angular
resolution and reduces the sensitivity by a factor of Na ,
where Na is the number of antennas.
The second approach is to beam-form and dedisperse:for

every searched location p p,x y( ), shift all the signals from all
antennas with the correct shift for position p p,x y( ), add them
up, and perform dedispersion. To mitigate the computational
load of this process, it is customaryto use only a small subset
of all sky locations at a time, considerably reducing the overall
survey speed of the instrument.
Another possibility is to use a combination of both

approaches by dividing the interferometers into closely packed
stations, beam-forming all stations to a subset of all possible
directions, and then incoherently adding the stations. All
methods trade the computational unfeasibility with a significant
sensitivity reduction. These approaches are further discussed in
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van Leeuwen & Stappers (2010), and a review on the existing
algorithms for blind transient searches using interferometers
can also be found in Bannister & Cornwell (2011).

8.1. Incorporating the FDMT Algorithm into Transient
Searches of Radio Interferometers

In this section, we analyze the complexity of blind searches
of short astrophysical signals with radio interferometers using
FDMT. We first calculate the computational and communica-
tion complexity of applying the FDMT algorithm after the
imaging operation. Moreover, we offer a way to reduce the
communication complexity by applying the FDMT algorithm
after the correlator operation and before the imaging operation.
We show that in principle, using our scheme, it is possible to
use modern radio interferometers to detect and locate short
astrophysical pulses in realtime withoutknowledge of the
dispersion measure.

We start by introducing some additional notation. In the
scenario of a blind dispersed pulse search with a radio
interferometer, we have signals from several telescopes. We
denote the raw voltage signal from the jth telescope by xj. We
further denote by Na the number of antennas, and by Nl the
number of distinct locations on the sky, or pixels, in the optimal
image resolution of the interferometer. The desired statistic that
we need to calculate for efficient detection is given by

å å= * +
=

= +

=

S t p p x H t u p p, , , , 45x y
t t

t t N

j

N

j j x y0
0

2
p a

0

0

( ) ( )( ( )) ( )

where u p p,i x y( ) represents the time delay of the signal at
antenna i, H is the dedispersion filter needed to be convolved
with to correct for dispersion, and ∗ represents convolution. We
wish to calculate this score for all combinations of sky
positions, dispersion trials N

N
d

p
, and start times N

N
s

p
. Therefore, the

number of calculated scores is N N N

N
l s d

p
2 .

To illustrate that the search for transients using interferom-
eters is feasible, we estimate the number of computations
required for searching FRBs with the core of MeerKAT:

=f 1 GHzmin , =f 1.75 GHzmax , n = 750 MHz is the baseband
sampling frequency, =t 3.6 sd (corresponds to a target DM of
1000), =t 1 msp . Using Na = 48 antennas of diameter

=D 13.5 ma , spread out to a maximal baseline of

=D 1 kmb , = »pN 2 17, 300l
D

D4

2
b

a
( ) (covering twice the

primary beam size in imaging), = ´N 0.75 10s
9,

= ´N 0.75 10p
6, and = ´N 2.7 10d

9,we get ´6 1010

scores per second, which means that the computing power
required for performing FDMT (estimating the logarithmic
factor in Equation (32) to be 16) is~1 TFlop s to process. For
comparison, this computational complexity is an order of
magnitude less than the required complexity for correlating the
signals (∼9TFlop/s). To show the importance of performing
dedispersion via FDMT instead of bybrute force in the case of
interferometers, we calculate the computational complexity of
the dedispersion step in the same setup using brute-force
dedispersion to be 220 TFlop/s.

8.2. The Proposed Solution

First, we quickly review the standard imaging process of
interferometry, using the approximations of aflat sky and short

observation. Assuming there is no dispersion, the desired score
is

*

å å

å å

å å

p

p

= +

= -

=

´ - -

=

= +

=

= =

= =

S t p p x t u p p

x t f ifu p p

x t f x t f

if u p p u p p
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, exp 2 ,
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t t
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j
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j j x y

f f

f

j

N

j j x y

f f

f

j k

N

j k

j x y k x y

0
0

2

0
0

2

, 0
0 0

p a

a

a

0

0

min

max

min

max

( ) ( ( ))

ˆ ( ) ( ( ))

ˆ ( ) ˆ ( )

( ( ( ) ( ))) ( )

denoting by x̂ the Fourier transform of x. To efficiently
calculate this score for every pixel p p,x y, we can use the
relation

- µ
-

u p p u p p
L L

c
p p, , , , 47j x y k x y

j k
x y( ) ( )

( )
· ( ) ( )

denoting by Lj the two-dimensional location of antenna j on the
plane (under the approximation of having all antennas on the
same plane). Nowwe can calculate the score at all positions
p p,x y( ) at the same timeby a two-dimensional Fourier
transform of the array:

⎛
⎝⎜

⎞
⎠⎟*å d=

-
-

S t p p

x t f x t f
L L f

c
p p

, ,

, , , 48

u v

j k f
j k

j k
u v

0

, ,
0 0

2

ˆ ( )

ˆ ( ) ˆ ( )
( )

( ) ( )

= -S t p p S t p p, , , , , 49x y u v0
1

0( ) ( ˆ ( )) ( )

where d a b,2 (( )) is equal to one if =a b, 0, 0( ) ( ) (to the
desired approximation), and zero otherwise.
The summation in Equation (48) is a sum of squares. This

means that coherent dedispersion operations must be performed
before correlating9because the imaging process calculates the
sum of the squared absolute values of the voltages.
Incorporating dedispersion into this, we can see that the

block size Nf we used earlier is transformed in this framework
to the size of the Fourier transform done by the correlator.
Because of the unknown dedispersion, at each image location
we need to get a time–frequency matrix. This means that we
need to perform a different two-dimensional Fourier transform
operation for each narrow frequency band. After that, we can
apply FDMT for every pixel’s time–frequency matrix. Denot-
ing the complexity of the ith step of the algorithm by Ci, the
complexity of the coherent dedispersion + STFT of all
individual antennas is

⎛
⎝⎜

⎞
⎠⎟= +C

N

N
N N N Nmax 1,

2
log log . 50d

p
a s d f1 2 2 2( ( ) ( )) ( )

The complexity of correlating all pairs of antennas is

⎛
⎝⎜

⎞
⎠⎟=

-
C

N

N

N N
Nmax 1, 2

1

2
. 51d

p

a a
s2 2

( ) ( )

9 The process of calculating *x t f x t f, ,j k0 0ˆ ( ) ˆ ( ) is referred to as “correlating” in
the literatureand is calculated by a computing infrastructure usually called “the
correlator.”
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The complexity of the imaging process is

=C N N
N N

N
log . 52l l

s d

p
3 2 2

( ) ( )

The complexity of the FDMT algorithm (without the STFT
part, which was already done in this context) is

=C N
N N

N
Nlog . 53l

s d

p
f4 2 2 ( ) ( )

So, the total complexity of this process is

= + + +C C C C C . 541 2 3 4 ( )
While the complexity of this process is indeed “optimal,” in

the sense that it is only a logarithmic factor larger than the
number of independent results, implementing this will result in a
reduced computational efficiency. This is due to data transport
between the imaging stage and the dedispersion stage. Between
these stages, N N N

N
l s d

p
2 complex numbers are being transported.

This could be mitigated by the fact that dedispersion can be
done before the imaging operation.

In order to move the FDMT operation before the imaging
operation, we need to take some care for chromatic aberrations.
If the frequency band is wide enough, then different
frequencies might represent different locations in the (u, v )
plane. The location on the (u, v ) plane wherewe need to put a
correlator output of frequency f and a pair of antennas j k, is

=
-

p p
f L L

c
, . 55u v

j k( )
( )

( )

Therefore, requiring that the visibilities of all frequencies in the
frequency bandwill be on the same bin in the (u, v ) planeyields

d
-

- <
L L

c
f f p

max
, 56

j k j k
uv

,
max min

∣ ∣
( ) ( )

where dpuv is the angular frequency difference between adjacent
grid points in the (u, v ) plane. If the band is wideor the field of
view is large, this condition will not hold for pairs of far-apart
antennas. In this case, it is necessary to split the frequencies into
subbands that are narrow enough to maintain Equation (56), and
after that, perform FDMT on each subband separately. Then, for
each final dispersion measure (at the final dispersion resolution,
not in the subband’s resolution), we can shift the frequency
bands in time accordingly, grid the visibilities in the optimal
way, and perform the imaging operation via a two-dimensional
FFT to get the optimal detection scores in the image plane.

Another issue is that if tp is shortand the required field of
view is large enough, it may happen that the time delay for the
pulse’s arrival between different antennas will be larger than tp.
In such a case, it is important to facet the field of view to areas
that are small enough that the time delay of the pulse’s arrival
time (with respect to the central direction) to different antennas
across the narrowed field of view is smaller than tp. Then,
perform this search algorithm to detect bursts within each facet.

Since the FDMT’s input and output dimensions have the
same size, the communication complexity of the proposed
solution is -N N N N

N

1

2
a a s d

p
2

( ) , which should (if N Na l
2 ) make the

algorithm’s runtime be computation limitedand thus feasible.
This summation-before-imaging scheme was already used

by Law et al. (2015) without the preceding step of performing
FDMT to reduce the computation time of the dedispersion step.

It is important to notethat, using our scheme, the computation
required to perform the imaging part is always larger than that
of the dedispersion part. This is not true when using brute-force
dedispersion, which is the most computationally demanding
stage when using a combination of a dense antenna placement,
large bandwidth, andfine time resolution and when searching
for pulses with high dispersion measures. For example, see the
computational complexity stated above for searching FRBs
with MeerKAT. This process is summarized in Algorithm 4.

Algorithm 4. Finding Short Pulses with Interferometers

Input: Antenna voltage series.
Output: S d t p p, , ,x y0( ) for every time, dispersion, and sky location.
1: for dispersion d0 in the range d0, max[ ] in steps of

t
=d

d t

t
p

d
step

max
2

do
2: Initialize =S t f p p, , , 0u v0

ˆ ( )
3: for antenna index j. do
4: Create the signal xj by convolving the jth antenna signal with the ded-
ispersion filter with index d0.

5: Apply STFT with block size of Nf on the signal xjto obtain xjˆ .
6: end for
7: for every pair of antennas j k, do
8: for each t f, do

9: =
-

p p,u v
L L f

c

j k( ) ( )

10: = +S t f p p S t f p p x t f x t f, , , , , , , ,u v u v j k
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

11: end for
12: end for
13: for Each populated p p,u v( ) do
14: =I t f S t f p p, , , ,p p u v,u v

( ) ˆ ( )
15: Apply FDMT with =d dmax step.

=S t d p p I t f, , , FDMT ,u v p p,u v
ˆ ( ) ( ( ))

16: end for
17: Data transpose operation. Each processing unit now holds tables of the
form =S p p S t d p p, , , ,t d u v u v,

ˆ ( ) ˆ ( )
18: for each dispersion d and time t do
19: Perform two-dimensional inverse Fourier transform to calcu-
late + = -S t d d p p S p p, , , ,x y t d u v0

1
,( ) ( ˆ ( )).

20: end for
21: end for

9. CONCLUSION

We present the FDMT algorithm,whichperforms anexact
incoherent dedispersion transform with a complexity of

+ DN N N N N2 logt f f f2( ). We show that regular implementation
tricks of the trade can be combined with the FDMT algorithm
to achieve significant computation speedup. We also present a
variant of the FDMT algorithm that is slightly more
computationally intensivebut concentrates all memory-access
operations intwo global transpose operations,and might
present further speedup on massively parallel architectures
such as GPUs. We show that the FDMT algorithm dominates
all other known algorithms for incoherent dedispersion and
hascomplexity comparableto the signal-processing operations
required to generate its input data. Therefore, we conclude that
incoherent dedispersion can now be considered a nonissue for
future surveys. We provide implementations of the FDMT
algorithm in high-level programming languages, which

12

The Astrophysical Journal, 835:11 (13pp), 2017 January 20 Zackay & Ofek



whenrunon a desktop computer achievea faster runtime than
the state-of-the-art implementations of brute-force dedispersion
on cutting-edge GPUs.

We further present an algorithm that bridges the gap between
coherent and incoherent dedispersion, and weshow that the
computational complexity of this algorithm is orders of
magnitude lower than that of coherent dedispersion for pulses
of resolvable duration. Using this algorithm, it will be possible
to perform blind searches for giant pulse emitting pulsars with
the sensitivity of coherent dedispersion searches.

Last, we compute the operation count for a blind search of
short astrophysical bursts, such as FRBs, with modern radio
interferometers and arrive at the conclusion that it is
computationally feasible using existing facilities.
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